舒星,男,博士,副教授,硕士生导师,IEEE会员、中国汽车工程学会会员、中国电工技术学会会员。主要从事新能源汽车动力电池状态估算、充电优化控制与故障诊断研究。近年来以第一或通讯作者在IEEE Transactions on Power Electronics、IEEE Transactions on Transportation Electrification、Journal of Power Sources、Energy、Reliability Engineering & System Safety、Iscience(Cell 旗下)等期刊上发表学术论文16篇,其中中科院SCI一区TOP期刊论文10篇,二区论文3篇,EI论文3篇,授权国家发明专利10余项,主持国家自然科学基金、重庆市自然科学基金等项目6项,入选全球前2%顶尖科学家榜单,获中国产学研合作创新成果奖二等奖、中国汽车工程学会优秀博士论文激励计划、中国机械工程学会优秀论文奖等荣誉。受邀担任IEEE PES电动汽车动力电池技术分会理事、第七届储能和智能载运国际学术会议分会场主席、《重庆理工大学学报(自然科学版)》青年编委、International Transportations on Electrical Energy System专刊编委、Frontiers in Energy Research专刊协调员,Energy Storage Materials、IEEE Transactions on Industrial Electronics等十余个期刊审稿人。
工作经历
2025.01- 重庆理工大学,车辆工程学院,副教授
2023.06-2024.12 重庆理工大学,车辆工程学院,讲师
研究方向
Ø 新能源汽车动力电池内部状态(SOC/SOH/SOP/RUL等)估算
Ø 动力电池充电优化控制
Ø 动力电池故障诊断与预警
科研项目
[1] 国家自然科学基金,复杂多源激扰下异体锂电池混装成组构型匹配与关键状态估算,2025/01- 2027/12,主持;
[2] 重庆市自然科学基金面上项目,复杂多应力耦合下动力锂电池组释热机理解析与状态估算研究,2024/07-2027/06,主持;
[3] 重庆市教委科学技术研究计划项目,复杂使用条件下电动汽车锂离子电池内部关键参数协同估算研究,2024/10- 2027/9,主持;
[4] 重庆理工大学高层次人才科研启动项目,新能源汽车动力电池管理,2023/06—2026/06,主持;
[5] 企业委托项目,锂离子电池老化机理研究及SOH预测模型开发,2023/11—2024/11,主持;
[6] 企业委托项目,车载电池大数据运行安全性分析,2024/6-2024/12,主持;
[7] 企业委托项目,基于示范平台大数据的燃料电池汽车产业链研究,2024/6-2024/12,主持;
获奖情况
2024/11 中国汽车工程学会优秀博士论文激励计划
2024/09 中国精品科技期刊顶尖学术论文
2024/09 全球前2%顶尖科学家(Stanford University)
2024/06 中国汽车工程学会博士生学术论坛高水平学术报告奖
2023/12 机械工程学报优秀论文奖
2022/12 中国产学研合作创新成果奖二等奖
2021/06 第34届世界电动汽车研讨会暨展览会(EVS34)优秀论文奖
代表性论文
[1] Xing Shu, Zheng Chen, Jiangwei Shen, Ming Ye, Qiang Zhang, Yonggang Liu, Xi Liu, Yuanzhi Hu, “Robust State of Health Estimation for Lithium-Ion Batteries Considering Random Charging Behaviors”, IEEE Transactions on Transportation Electrification, 2024/10/21.
[2] Xing Shu, Hao Yang, Xi Liu, Renhua Feng, Jiangwei Shen, Yuanzhi Hu, Zheng Chen, Aihua Tang, State of health estimation for lithium-ion batteries based on voltage segment and transformer, Journal of Energy Storage, 108, 2025.
[3] Xing Shu, Jiangwei Shen, Shiquan Shen, Yuanjian Zhang, Zheng Chen*, and Yonggang Liu**, “State of Health Estimation for Lithium-Ion Batteries Based on Voltage Reconstruction and Ensemble Learning”, IEEE Transactions on Power Electronics, 2023. . (SCI一区TOP期刊)
[4] Xing Shu, Jiangwei Shen, Zheng Chen*, Yuanjian Zhang, Yonggang Liu, and Yan Lin*, “Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms”, Reliability Engineering & System Safety 228, 108821, 2022. (SCI一区TOP)
[5] Xing Shu, Jiangwei Shen, Fengxiang Guo, Yuanjian Zhang, Zheng Chen*, and Yonggang Liu**, “State of Charge Estimation for Lithium-ion Battery Based on Hybrid Compensation Modeling and Adaptive H-Infinity Filter”, IEEE Transactions on Transportation Electrification, 2022. (SCI一区TOP)
[6] Xing Shu, Guang Li, Yuanjian Zhang, Zheng Chen* and Yonggang Liu**, “A Flexible State of Health Prediction Scheme for Lithium-Ion Battery Packs with Long Short-Term Memory Network and Transfer Learning”, IEEE Transactions on Transportation Electrification 7 (4), 2238-2248, 2021. (SCI二区TOP)
[7] Xing Shu, Guang Li, Yuanjian Zhang, Shiquan Shen, Zheng Chen* and Yonggang Liu**, “Stage of Charge Estimation of Lithium-ion Battery Packs Based on Improved Cubature Kalman Filter with Long Short-Term Memory Model”, IEEE Transactions on Transportation Electrification 7 (3), 1271-1284, 2020. (SCI一区TOP)
[8] Xing Shu, Guang Li, Yuanjian Zhang, Jiangwei Shen, Zheng Chen* and Yonggang Liu**, "Online diagnosis of state of health for lithium-ion batteries based on short-term charging profiles," Journal of Power Sources, vol. 471, p. 228478, 2020/09/30/ 2020. (SCI一区TOP期刊)
[9] Xing Shu, Guang Li, Jiangwei Shen, Zhenzhen Lei, Zheng Chen* and Yonggang Liu**, "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, vol. 207, p. 118262, 2020/09/15/ 2020.(SCI一区TOP)
[10] Xing Shu, Guang Li, Jiangwei Shen, Zhenzhen Lei, Zheng Chen* and Yonggang Liu**, "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, vol. 204, p. 117957, 2020/08/01/ 2020.(SCI一区TOP)
代表性专利
[1] 舒星,周美颜,胡远志,冯仁华,林春景,齐创,一种考虑用户充电行为的锂离子电池健康状态估算方法,中国发明专利:ZL 2024 1 0202656.5(已授权,CN 118033457 B)
[2] 舒星,杨浩,胡远志,赵红茜,冯仁华,汤爱华,周美颜,一种无温度传感器的锂电池放电容量估算方法,中国发明专利:ZL 2024 1 0502836.5(已授权,CN 118393361 B)
[3] 舒星,陈峥,申江卫,刘永刚,赵红茜,颜文胜. 一种基于迁移学习算法的动力锂电池组SOH 估计方法. 中国发明专利:ZL 202110422710.3(已授权,CN 113128672B)
[4] Xing Shu, etc., Method for Estimating the State of Health of Lithium-Ion Batteries Considering User Charging Behavior, US Patent, 2025.
[5] 舒星,周美颜,赵红茜,胡远志,汤爱华,冯仁华,杨浩,陈飞,基于TCN-GRU神经网络模型和迁移学习的锂离子电池SOC估计方法,中国发明专利:202411644339.5
联系方式
shuxing@cqut.edu.cn